Noise Interference

G Cameron Telecom NZ Ltd

NZCCPTS Noise Interference Guide

- Good pragmatic overview
- Due to high variability in nature of:
 - noise sources within power systems (frequencies, levels and time variation)
 - coupling to telecommunications plant
 - susceptibility of telecommunications plant need to approach each problem with an open mind a formularised approach will not always work.

Electromagnetic Fields around Power Lines

Below several hundred kHz

- Structure attached
- Quasi-static
- Decompose into separate
 - magnetic,
 - electric (capacitive) and
 - conductive coupling mechanisms.
- Earth return component of current is the primary concern

Weak Coupling Assumption

- Ignore the affect of telecommunications plant on current distribution in the power line
- Allows us to decompose problem into
 - Calculate current distribution on power line independently of telecommunications plant using standard tools
 - Calculate induced voltage at site of telecommunications plant E = C x L x I x K

Coupling of Noise to Telecommunications Plant

- Inductive coupling approximately linearly proportional to frequency at road width separations
- Susceptibility of telecommunications plant to noise is technology and frequency dependent
- For telephone services a 2000 Hz noise current is approximately 40,000 x worse than a 50 Hz current of the same magnitude
- Very small noise currents in power lines (10s of milliamps) can cause significant problems

Electromagnetic Compatibility

- Electromagnetic compatibility issue
 - Responsibility of source to limit magnitude of interference
 - Responsibility of receiver to limit susceptibility of their system to interference.

Noise Conversion Mechanisms

- Telecommunications cables use transverse signals over twisted pair cable
- Telecommunications plant has very high symmetry to prevent induced longitudinal noise causing audible transverse noise
- Balance > 60 dB if properly maintained reject 99.9% of induced longitudinal voltage.

Noise Investigation Techniques

- Survey longitudinal voltages on telecommunication cables
- Measure spectrum of induced noise
- Rule in/out conductive coupling mechanisms
- Obtain power system distribution plans, notes of recent changes
- "Measure" current magnitude and flow in power network

Psychological Aspects

- Take telecommunications company time to recognise that there is a widespread problem
- Telecom customers are not good at complaining to Telecom!
- Telecommunication customers expectations are rising

Case Studies

- Dismantling of 110kV lines north of Temuka 47th Harmonic Zero Sequence resonance
- Lower Waitaki interconnection of 110 kV network to upper Waitaki stations
- HVDC Link
 - 1965 Toll circuits over 10 mile long between Benmore and Haywards
 - 1965 ripple control interference as far away as Blenheim
 - 1980s noise in Fairton when in earth return mode

Case Studies

- Tiwai point 23rd and 25th harmonic causing noise at Omarama and ripple control problems in Otago and Southland.
- Kataia CBD broken neutral
- Westport and Cape Foulwind loss of one phase in interconnecting line
- Ngahere Gold Dredge
- Tuamarina ripple relay signal problem

Case Studies

Taupo SWER lines