HB 219 Worked Example 3.4.2 Fault at 33 kV Concrete or Steel Pole

10 km aerial HV feed, no OHEW.

33 kV source, 20 ohm NER.

Fig 3.4.2.1 Fault at 33 kV concrete or steel pole

Fig 3.4.2.2 Symmetrical components network for a HV single phase to earth fault at the pole

33 kV SYSTEM DATA

SOURCE VOLTAGE (Volts) & IMPEDANCE (Ohms)

Single phase source voltage $V_{\mathrm{ph-n}}$ (Volts)	$Vs_1 := \frac{33000}{\sqrt{3}} \qquad Vs_1 = 19053$
Single Phase Fault Level S (MVA)	<u>S</u> := 500

Source impedance calculated from the fault level. Assume source impedance is purely reactive and positive sequence = negative sequence = zero sequence impedance.

Positive sequence source impedance (Ohms)
$$Z_{S1} \coloneqq \frac{33^2}{s} \cdot j \qquad Z_{S1} = 2.178j$$
 Negative sequence source impedance (Ohms)
$$Z_{S2} \coloneqq Z_{S1}$$
 Zero sequence source impedance (Ohms)
$$Z_{S0} \coloneqq Z_{S1}$$

33kV Overhead line impedance

Conductor size: DOG (6/4.72mm aluminium with 7/1.57mm steel) Length (km) $L_{\rm M} := 10.0$

Line sequence impedances (Ohm/km)

Positive sequence line impedance (Ohms/km)	$Z_{L1} := 0.2722 + 0.3479j$
Negative sequence line impedance (Ohms/km)	$z_{L2} \coloneqq z_{L1}$
Zero sequence line impedance (Ohms/km)	$Z_{L0} := 0.4204 + 1.5748j$

33kV NER AND EARTHING IMPEDANCES (Ohms)

Neutral Earthing Resistor (Ohms)	$Z_{NER} := 20$
Zone substation earthing system resistance (Ohms)	$R_{ZS} := 0.01$
Surface soil resistivity (Ohm-m)	$\rho := 10$ Ohm-m

Each pole 2 m deep in soil and 0.5 m dia.

Pole earth resistance (Ohms)
$$R_p := 0.17 \cdot \rho \qquad \qquad R_p = 1.700$$
 The equivalent hemispherical radius (m)
$$r_E := \frac{\rho}{2 \cdot \pi \cdot R_p} \qquad \qquad r_E = 0.936$$

CALCULATIONS

One Phase to Earth fault on the 33 kV feeder at a conductive pole

Sequence network impedance (Ohms)

$$Z_{pos} := Z_{S1} + Z_{L1} \cdot L \qquad \qquad Z_{neg} := Z_{S2} + Z_{L2} \cdot L \qquad \qquad Z_{zero} := Z_{S0} + Z_{L0} \cdot L + 3 \cdot R_p + 3 \cdot R_{zs}$$

$$Z_{pos} = 2.722 + 5.657j$$
 $Z_{neg} = 2.722 + 5.657j$ $Z_{zero} = 9.334 + 17.926j$

Zero sequence fault current (Amps)

$$I_0 \coloneqq \frac{Vs_1}{Z_{pos} + Z_{neg} + Z_{zero} + 3 \cdot Z_{NER}} \\ I_f \coloneqq 3 \cdot I_0 \qquad I_f = 663.0 - 259.2j \qquad \left|I_f\right| = 711.9$$

EPR at the conductive pole (Volts)

$$EPR_{pole} := I_f R_p$$
 $\left| EPR_{pole} \right| = 1210$